41 research outputs found

    0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator

    Get PDF
    This paper presents the extremely low-voltage supply of the CMOS structure of a differential difference transconductance amplifier (DDTA). With a 0.3-volt supply voltage, the circuit offers rail-to-rail operational capability. The circuit is designed for low-frequency biomedical and sensor applications, and it consumes 357.4 nW of power. Based on two DDTAs and two grounded capacitors, a voltage-mode universal filter and quadrature oscillator are presented as applications. The universal filter possesses high-input impedance and electronic tuning ability of the natural frequency in the range of tens up to hundreds of Hz. The total harmonic distortion (THD) for the band-pass filter was 0.5% for 100 mV(pp) @ 84.47 Hz input voltage. The slight modification of the filter yields a quadrature oscillator. The condition and the frequency of oscillation are orthogonally controllable. The frequency of oscillation can also be controlled electronically. The THD for a 67 Hz oscillation frequency was around 1.2%. The circuit is designed and simulated in a Cadence environment using 130 nm CMOS technology from United Microelectronics Corporation (UMC). The simulation results confirm the performance of the designed circuits

    0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing

    Get PDF
    This paper demonstrates the advantages of the multiple-input transconductor (MI-G(m)) in filter application, in terms of topology simplification, increasing filter functions, and minimizing the count of needed active blocks and their consumed power. Further, the filter enjoys high input impedance, uses three MI-G(m)s and two grounded capacitors, and it offers both inverting and non-inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass (AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical results that confirm attractive features of the developed filter based on MI-G(m)

    Inductance Simulators and Their Application to the 4th Order Elliptic Lowpass Ladder Filter Using CMOS VD-DIBAs

    Get PDF
    This paper presents inductance simulators using the voltage differencing differential input buffered amplifier (VD-DIBA) as an active building block. Three types of inductance simulators, including floating lossless inductance, series inductance-resistance, and parallel inductance-resistance simulators, are proposed, in addition to their application to the 4th order elliptic lowpass ladder filter. The simple design procedures of these inductance simulators using a circuit block diagram are also given. The proposed inductance simulators employ two VD-DIBAs and two passive elements. The complementary metal oxide semiconductor (CMOS) VD-DIBA used in this design utilizes the multiple-input metal oxide semiconductor (MOS) transistor technique in order to achieve a compact and simple structure with a minimum count of transistors. Thanks to this technique, the VD-DIBA offers high performances compared to the other CMOS structures presented in the literature. The CMOS VD-DIBAs and their applications are designed and simulated in the Cadence environment using a 0.18 mu m CMOS process from Taiwan semiconductor manufacturing company (TSMC). Using a supply voltage of +/- 0.9 V, the linear operation of VD-DIBA is obtained over a differential input range of -0.5 V to 0.5 V. The lowpass (LP) ladder filter realized with the proposed inductance simulators shows a dynamic range (DR) of 80 dB for a total harmonic distortion (THD) of 2% at 1 kHz and a 1.8 V peak-to-peak output. In addition, the experimental results of the floating inductance simulators and their applications are obtained by using VD-DIBA constructed from the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental ones, confirming the advantages of the inductance simulators and their application
    corecore